Generalized multilevel function-on-scalar regression and principal component analysis
نویسندگان
چکیده
منابع مشابه
Generalized multilevel function-on-scalar regression and principal component analysis.
This manuscript considers regression models for generalized, multilevel functional responses: functions are generalized in that they follow an exponential family distribution and multilevel in that they are clustered within groups or subjects. This data structure is increasingly common across scientific domains and is exemplified by our motivating example, in which binary curves indicating phys...
متن کاملGeneralized Multilevel Functional-on-Scalar Regression and Principal Component Analysis
This manuscript considers regression models for generalized, multilevel functional responses: functions are generalized in that they follow an exponential family distribution and multilevel in that they are clustered within groups or subjects. This data structure is increasingly common across scientific domains and is exemplified by our motivating example, in which binary curves indicating phys...
متن کاملMultilevel Functional Principal Component Analysis.
The Sleep Heart Health Study (SHHS) is a comprehensive landmark study of sleep and its impacts on health outcomes. A primary metric of the SHHS is the in-home polysomnogram, which includes two electroencephalographic (EEG) channels for each subject, at two visits. The volume and importance of this data presents enormous challenges for analysis. To address these challenges, we introduce multilev...
متن کاملMultilevel sparse functional principal component analysis.
We consider analysis of sparsely sampled multilevel functional data, where the basic observational unit is a function and data have a natural hierarchy of basic units. An example is when functions are recorded at multiple visits for each subject. Multilevel functional principal component analysis (MFPCA; Di et al. 2009) was proposed for such data when functions are densely recorded. Here we con...
متن کاملGeneralized mean for robust principal component analysis
In this paper, we propose a robust principal component analysis (PCA) to overcome the problem that PCA is prone to outliers included in the training set. Different from the other alternatives which commonly replace L2-norm by other distance measures, the proposed method alleviates the negative effect of outliers using the characteristic of the generalized mean keeping the use of the Euclidean d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biometrics
سال: 2015
ISSN: 0006-341X
DOI: 10.1111/biom.12278